
AD-A092 184 BROWN UNIV PROVIDENCE RI LEFSCHETZ CENTER FOR OYNAMI -ETC FIG 12/2
APPROXIMATION TECHNIQUES FOR PARAMETER ESTIMATION IN HEREDITARY -ETC(U)
SEP 80 H T BANKS, 1 6 ROSEN DAAG29-79-C 0161

UNCLASSIFIED AFSR-TR-I 1 I NL

EN

son1I11



11U. 12 0

1111112 .liii,- '_l_ ll' Dl'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS- 963-A



B C C GREA NTUCT/

(,_9 EF RMINGORNZATO NMEANDADDES .PRORM CLEMNPRET. AS

Bron Uivrsiy RFORK Ut.N NUMBER

9I. CEROROLING OGAICEIO NAME AND ADDRESS 10. PREORTM ELATE RJCTS

Air Force Office of Scientific Research/NM I .MRG

( Boiling Air Force Base
Washington, DC 20332 1

14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

(~~7ii~f UNCLASSIFIED ".
15a. DECLASSIFICATION/OOWNGRADING

CIA SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited DI
NOV 2 8 1980

17. DISTRIBUTION STATEMENT (of the abstract entered in Bloch. 20, it different from Rer

IS. SUPPLEMENTARY NOTES

To BE presented at the 19th IEEE Conference on DECISION and
CONTROL, Albuquerque, New Mexico, December 10-12, 11980

19. KEY WORDS (Continue on reverse side if necessary end identity by block number) I

2i ABSTR.CT (Continue on reverse side If necessary and Identify by block number)

wo types of approximation techniques for parameter estimation of delay systems
C) are sescribed and compared. One involves state discretization only While theC-.> other entails simultaneous state and time icezton

80 11 0 6c))
C.3__

DD I JAN 7 1473 EDITION OF I NOV 69 IS O,SSOLETE~b 4  UNClaSSIFIED TNSAG RebtsElrI

e' 6 Jj/ F,'SECURITY CLASSIFICATION OF TI AE(7* aaElrd



AFOSR-T. 8 0 -1116

APPROXIMATION TECHNIQUES FOR PARAMETER ESTIMATION IN

HEREDITARY CONTROL SYSTEMS*

by

H. T. Banks

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics

Brown University
Providence, R.I. 02912

AccesSlOn For

NTIS GRUAIand Dc TAB
Unara ouncpd

Justification

I. G. Rosen Distrib tL _
Department of Mathematics _vai:'_L e

Bowdoin College
Brunswick, Maine 04011 Avl specaal

September, 1980

To be presented at the 19 th IEEE Conference on Decision and Control,
Albuquerque, New Mexico, December 10-12, 1980.

Research supported in part by the Air Force Office of Scientific
Research under a-AFOSR 76-30921, in part by the National Science
Foundation under MCS-79-05774-02 and in part by the United States
Army ARO-DAAG-29-79-C-0161.

Lpgp#"e for puble relfte I



:~iz tc.~.'<~.bj;cn reviewod and Is
pp ovort foz r Ij f IA '! AIR 190-12 (7b).

%. D. HLOSS
-chnical Infor,i'tion Officar



7 APPROXIMATION TECHNIQUES FOR PARAMETER ESTIMATION IN

HEREDITARY CONTROL SYSTEMS

H. T. Banks and I. G. Rosen

Abstract

Two types of approximation techniques for parameter estimation

of delay systems are described and compared. One involves state

discretization only while the other entails simultaneous state and

time discretization.

We consider two approximation techniques for parameter

identification problems for delay systems of the form

(1) A(t) - Lxt + Bu(t) 0 < t < T

x(0) - n x0

where B is an n x m matrix, u is an Rm valued function

that is piecewise continuous on [O,T] (i.e., u E PC(OT)),

n E Rn and * is an Rn valued function that is square integrable
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yn

on (-r,O) (i.e., E E L (-r,O)). For x:[-r,T] Rn measurable

and t E [0,T], we denote by x t  the measurable function given

by xt(Gr) = x(t+O), -r < 0 < 0. The linear operator

L:Ln(-r,0) Rn is assumed to be of the form:

20

V
(2) LO I A (- T) + A(s)¢(s)ds

j=0 j J -or

where 0 = 0 < T I < T2-..< z = r, Aj, j = 0,1,2...v, are n x n

matrices and A is an n x n matrix valued function which is

square integrable on (-r,O). Strictly speaking the expression

for L given by (2) is not well defined for all E £ Ln(-r,O) in

that point evaluations of * are required. However, with the

usual interpretation (see [7]) the system (1) has well defined

solutions for all (n,E C Rn x Ln(-r,O).

The basic parameter identification problem (PID) is one of

fitting to data a model such as (1) (where u is a fixed input,

Ai = Ai(q) i = 0,1,2 ...v, A(-) = A(.,q) and B = B(q) are con-

tinuous functions of some parameter q E R ) by choosing parameter

values q from some compact set - c RK and initial conditions.

n,O from some compact Y contained in Rn x L (-r,0). To be more

specific, assume that one is given E Cn(0,T) (Cn( OT) denoting

the collection of Rn valued continuous functions defined on (0,T))

that represents measurements on [0,T] of the "observables"

c(tq) - cx(t;q) + du(t) for (1) where t * x(t;q) is the solution

to (1) corresponding to a value q E2. (If, as usual, only dis-
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crete measurements are made, the curve may be constructed

via some interpolation scheme.) The problem then is to find a

value = R,(, )) E .3 x Ysuch that

J(y) = Ic(0,q) - C0)12 + jc(T,q) &(T) 12

1 2

+ [c(s q) - &(s)12 ds
0 3

attains a minimum on 3 x Y at y = . Here wlwt2,w3  represent

positive definite weighting matrices.

These problems are infinite dimensional state system problems

and our approach involves first rewriting (1) as an equivalent

ordinary differential equation (ODE) in an appropriately chosen

Hilbert space Z. As the state space we choose Z = Rn x L2(-r,O)

since one can argue equivalence of (1) in some sense (mild solutions)

to the abstract ODE in Z given by

i(t) -*fz(t) + (Bu(t),O)

with initial conditions z(O) a = (, ). More precisely, taking

x as the solution to (1) on [0,) for a given (n,$) and u - 0

we define the homogeneous solution semigroup {S(t):t > 0 by

St)C,) - Cxt;n,*), xt(n,f)). Then {S(t):t > 0) is a

J semigroup of bounded linear operators defined on Z with

infinitesimal generator -ca defined on .-tCi) - ((4(0),#): # EW n (-rO))
1,2b( ) (( [ [

by . @0,)-(L ,j) (see [3), 17]).
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In the light of the discussion above, we are able to obtain

solutions to the PID governed by the delay system (1) via solutions

to the PID formulated in the Hilbert space Z given by

(-9) Given input u C pcn(0,T) and observation E Cn(OT),

minimize

2

J(Y) = J(qz O ) = Icz(O;y) + du(O) - (O)Jw +

IJ z(T;y) + du(T) -(T)lw2 + + du(s) - 2s) 3 ds

over r *.9xS-× subject to

iCt) -sQ(q)z(t) + (B(q)u(t),O)

z(O) - zO .

Approximate solutions to the PID (9 are obtained via the

following two techniques, one involving discretization in the state

only, the other involving simultaneous discretization in state and

time.

Technique 1.

Choose a sequence of finite dimensional approximating sub-

spaces ZN of Z and let P represent the orthogonal projection



of Z onto ZN along (ZN) . Define the operators Nq):ZN ZN

in such a way that they appropriately approximate the operator

-W(q) on Z for each q E. (see [3], [7]) and consider the

sequence of approximating PID given by

W91 Given input u E PCn(o,T) and observation F E Cn(O,T)

minimize:

( JN(q,zN) I zN( 0;yN) + du(O) - (0)12 +
w1

lczN(T;y N] + du(T) - C(T)1 2 + fTIezN(s;YN) + du(s) - C(s)I ds

over rN x pNY subject to

zN (t) =(N(q)z Nt) + P N(B(q)u(t),0)

zN(0) z N

For each N, (SY9 N represents a PID with finite dimensional state

constraint. Standard gradient projection and conjugate gradient

minimization techniques for optimization problems governed by ODE

state equations (see [101) may be employed to obtain solutions.

Technique 2.

Choose a sequence of finite dimensional approximating spaces

ZN (as opposed to subspaces as was the case in Technique 1) with
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projection-like mappings rN:Z ZN. Define operators

_WN(q) :ZN -I ZN which in some sense approximate _w(q) for each

q E - (see [9]). Let C(z) and D(z) be rational function

zapproximations to the exponential (RFAE) e , and consider the

following sequence of approximating PID:

2 N , N
Given input {uil E Rm and observationj=O 0 "I
{&} E e u(), (4), j = o,1,21,...pN,

jN X N N '

where p is that positive integer for which
Pr < T < minimize:

JA 0 + u0 012 +
N(,/N) *JN(q,z 0 N) = IcNzN(YN) N du N wl  +

^ N YpCN2 +r p N- 1 ^ 2
A^Z N) + dN pN1  Irj~ A Zz'(y) + dul -C 1

NcN w duN j=0 3

over rN X W N subject to

z~ ~ ~ N h~))N+k~gQNq)N() k =0,1,2... .pN-l

ZN ON

where BN(q)n -rN(B(q)n,O) for n E Rn.

For each N, (40)2 is a PID governed by a difference equation
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and can be solved via standard numerical methods which are

readily available (see [10]). Under appropriate conditions on ZN

N NN
pN, Q((q),in Technique 1 (see [S]) and on Z 7N' N C(z)

D(z) in the case of Technique 2 (see [9]), the following results

may be established.

Theorem 1. Suppose -{VN} (respectively {yN}) is a sequence of

solutions to the approximate problems WY)2 (respectively

(AN1) Then there exists a 7 = Er and subsequences

{ N - )I and Vk 0  ) such that

k Nk
(a) -N q in RK ( q)

k

and Nk
(b) TrN k -ONk +-0 in Z (Z- Z-0 in Z)

where t ZN Z denotes the Moore-Penrose generalized inverse
Nk Nk

of 7Nk (see [81). Moreover, in both cases 7 will be a solution

to problem (L). If the solution to problem (?P) is unique,

then the sequences {7 N}' {y themselves converge to y in the

above sense.

In both Techniques 1 and 2, schemes satisfying the conditions

required to establish the veracityof the above theorem may be

realized via the construction of zN,pN -eN(q) or ZN, T N" N(q )

based upon finite difference or spline approximations (see [3],[7],[91).

...............- .
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The RFAE C(z) and D(z) can be chosen from among a subclass

of the Pads approximations to eZ (see [9]). Proofs of the

convergence stated in the theorem rely heavily upon results from

functional analysis and linear semigroup theory.

We have tested the above techniques on a number of examples

(see [4] for extensive tests of Techique 1) using the "averaging" and

"spline" state approximations of [3] and [7] respectively. We present

here a typical example to illustrate and compare results for the two

techniques.

Example

We consider the scalar equation

*(t) = a0x(t) + a1x(t-1) + u(t)

with step input u = X[.l,,), initial data x(O) 1, -1 < e < 0, and

observations c(t) = x(t). "Data" 4 was generated on [0,2] by
,

integrating the equation exactly with true parameter values a* = .05

and a* = -4.0. (The techniques were also tested with "data" generated

by adding random noise to the true solution. The resulting parameter

estimates obtained are essentially unchanged from those obtained using

"data" without noise.) For several values of approximation level N,

iterative techniques with startup values a N0 = .03, a '0 = -3.0 were

used to solve the approximating problems C_1) and (9)2 corre-

sponding to this "data" { on [0,2]. The results obtained are

presented in tabular form below. In both techniques the AVE refers to

the "averaging" state approximation of [3] while SPL 1 refers to the

_____________________I
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piecewise linear spline state approximations of (7]. In Technique 2,

we used the Pad6 RFAE

1 2 12(1 + 2/2C(z) = P2 2 (z) = (1 + Z + Z2/12)/(l T z + z2/12)

and

1 1 2 -1
D(z) = P20 ( z) = (1 - z + z /8)

which correspond to time discretization schemes of approximation

index q = 4 (see [91 for details and further discussions).

TECHNIQUE 1

AVE SPL I

-N -N -N -N
N 0  a1  a0  1

2 1.0869 -4.6236 .0995 -4.1639

4 .6525 -4.3160 .0417 -4.0523

8 .3825 -4.1660 .0439 -4.0222

16 .2245 -4.0898 .0449 -4.0151

32 .1384 -4.0505 .0454 -4.0133

TRUEVALUES .0500 -4.0000 .0500 -4.0000

TECHNIQUE 2

AVE SPL 1

N aON ai N a N al N

2 1.1742 -4.9316 .1564 -4.3972

4 .6.325 -4.4671 .0045 -4.1682

8 .3368 -4.2838 -.0121 -4.1307

16 .2104 -4.1252 .0292 -4.0488

32 .1400 -4.0460 .0474 -4.0089 j
TRUE .0500 -4.0000 .0500 -4.0000VALUES

.. .. .. ..... . .I IIII II ..-m -~J _ _ _ _ _ _ _
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The results obtained from our comparisons of Techniques 1 and 2

on a number of examples reveal that when the approximations reprented by
in 2

-r N1 and D( N in are of an order comparable to

that of the scheme used in solving the ordinary differential equation
N 1

for zN  in (OW9 1)N, the parameter estimates obtained are comparable.

The implementation of Technique 2, which involves a simple difference

equation approximation for the delay equation, is, in many cases, quite

simple. For both techniques our studies indicate that the first order

spline methods of [71 lead to schemes that are superior in many

situations to those based on the averaging methods of [3] (see [4] and

[9]). Of course, when one employs the cubic spline approximations of

[71 (e.g., see [9]) even more impressive results are obtained.

The techniques discussed in this paper have also been used with

success for parameter identification in problems where the delays

l, 2, ...IT V = r themselves are among the parameters to be estimated

(see [1], [4), 16] for Technique 1; numerical results for Technique 2

in this case along with proofs will appear in a forthcoming manuscript)

even in situations where does not exist (for discussions of this

and its significance, see [1]). Finally, the methods are also

applicable to certain classes of nonlinear parameter estimation and

control problems (see [2], [6], [9]).
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